New accepted paper in Multimedia Tools and Applications Journal (Q1, IF=3.6) 

04/12/2023

Title : Efficient text-based query based on multi-level and deep-semantic multimedia indexing and retrieval

Abstract 

Recent technological advancements have led to a significant increase in the quantity and accessibility of videos. The decrease in video acquisition costs and the increase in memory capacity have made it possible to store large video collections in computer systems. To effectively exploit these collections, it is crucial to have tools that facilitate access and management. In this paper, we present a multimedia retrieval approach that prioritizes the user's needs by starting with a text-based query. The approach consists of two main parts: (i) a new multi-level and deep-semantic video classification indexing method, and (ii) a query expansion mechanism and relevance feedback system to improve the results based on the user's feedback. Our contribution is demonstrated through the implementation of the Deep-VISEN prototype and experiments on a collection of 2700 videos and 62838 images. The results show that our algorithm is effective and precise..

Utilisez les blocs de contenu d'image pour séparer visuellement le contenu de la page

A part des titres, les blocs de contenu d'image vous permettront de couper le contenu de la page. Séparez des paragraphes par images correspondant au sujet de l'article.

Utilisez l'élément de citation pour mettre en valeur des citations d'auteur

Voici la place pour votre texte. Cliquez ici et commencez à taper. Sed ut perspiciatis unde omnis iste natus error sit voluptatem accusantium doloremque laudantium totam rem aperiam eaque ipsa quae ab illo inventore veritatis et.

Créez votre site web gratuitement ! Ce site internet a été réalisé avec Webnode. Créez le votre gratuitement aujourd'hui ! Commencer